Label Propagation for Semi-Supervised Learning in Self-Organizing Maps

نویسنده

  • Lutz Herrmann
چکیده

Semi-supervised learning aims at discovering spatial structures in high-dimensional input spaces when insufficient background information about clusters is available. A particulary interesting approach is based on propagation of class labels through proximity graphs. The Emergent Self-Organizing Map (ESOM) itself can be seen as such a proximity graph that is suitable for label propagation. It turns out that Zhu’s popular label propagation method can be regarded as a modification of the SOM’s well known batch learning technique. In this paper, an approach for semi-supervised learning is presented. It is based on label propagation in trained Emergent SelfOrganizing Maps. Furthermore, a simple yet powerful method for crucial parameter estimation is presented. The resulting clustering algorithm is tested on the fundamental clustering problem suite (FCPS).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Self-Organizing Feature Map for Gene Classification

In this thesis, a study on gene expression data analysis is done using some supervised, unsupervised and semi-supervised approaches. The task of class prediction for six gene expression datasets (namely, Brain Tumor, Colon Cancer, Leukemia, Lymphoma and SRBCT) has been carried out. Here, a one-dimensional self-organizing feature maps (SOFM) in a semi-supervised learning framework is developed f...

متن کامل

Biologically Inspired Feedforward Supervised Learning for Deep Self-Organizing Map Networks

In this study, we propose a novel deep neural network and its supervised learning method that uses a feedforward supervisory signal. The method is inspired by the human visual system and performs human-like association-based learning without any backward error propagation. The feedforward supervisory signal that produces the correct result is preceded by the target signal and associates its con...

متن کامل

Semi-Supervised Learning for Web Text Clustering

Supervised learning algorithms usually require large amounts of training data to learn reasonably accurate classifiers. Yet, for many text classification tasks, providing labeled training documents is expensive, while unlabeled documents are readily available in large quantities. Learning from both, labeled and unlabeled documents, in a semi-supervised framework is a promising approach to reduc...

متن کامل

Graph Construction with Label Information for Semi-Supervised Learning

In the literature, most existing graph-based semisupervised learning (SSL) methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between l...

متن کامل

Bagging and Bumping Self Organising Maps

In this paper, we apply the combination method of bagging which has been developed in the context of supervised learning of classifiers and regressors to the unsupervised artificial neural network known as the Self Organising Map. We show that various initialisation techniques can be used to create maps which are comparable by humans by eye. We then use a semi-supervised version of the SOM to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007